Ch2. PROPERTIES OF PURE SUBSTANCES

2-1 PURE SUBSTANCE

A substance that has a fixed chemical composition throughout is called *a pure substance*. Water, Nitrogen, helium, and carbon dioxide, for example, are all pure substances

สารบริสุทธิ์ คือสารที่เป็นเนื้อเดียวกันและมีองค์ประกอบ ทางเคมีคงที่

สามารถเกิดขึ้นได้มากว่า 1 เฟส แต่ทุกเฟสองค์ประกอบ

<u>ขางเคมีต้องเหมือนกัน</u>

2-2. PHASES OF A PURE SUBSTANCE

2-2. PHASE-CHANGE PROCESSES OF

PURE SUBSTANCES

There are many practical situations where two phases of a pure Substance coexist in equilibrium. Water exits as a mixture of liquid and vapor in the boiler and the condenser of a steam power plant. The refrigeration turn from liquid to vapor in the freezer in a refrigerator

Compressed Liquid and SUbcooled

Consider a positioncylinder device containing liquid water at 20 °C and 1 atm pressure. Under these conditions, water exists in the liquid phase, and it is called a compressed liquid, or a subcooled liquid.

A liquid that is about to vaporize is called a saturated liquid.

Latent heat

Sensible heat

 $\Gamma_{
m sat}$

Saturation temperature, P_{sa}

Saturation pressure,

TABLE 2-1

Saturation (boiling) pressure of water at various temperatures

Temperature, <i>T</i> ,°C	Saturation pressure, <i>P_{sat}</i> , kPa		
-10	0.26		
-5	0.40		
0	0.61		
5	0.87		
10	1.23		
15	1.71		
20	2.34		
25	3.17		
30	4.25		
40	7.38		
50	12.35		
100	101.3 (1 atm)		
150	475.8		
200	1554		
250	3973		
300	8581		

Saturated Temperature and Saturation Pressure

FIGURE 2-12

The liquid–vapor saturation curve of a pure substance (numerical values are for water).

TABLE 2-2

Variation of the standard atmospheric pressure and the boiling (saturation) temperature of water with altitude

Elevation,	Atmo- spheric pressure, kPa	Boiling tempera- ture, °C	
0	101.33	100.0	
1,000	89.55	96.3	
2,000	79.50	93.2	
5,000	54.05	83.0	
10,000	26.50	66.2	
20,000	5.53	34.5	

Saturated Temperature and Saturation Pressure

Saturated Temperature and Saturation Pressure

FIGURE 2-15

In 1775, ice was made by evacuating the air space in a water tank.

PROPERTY DIAGRAM FOR PHASE-CHANGE PROCESS

1. The T-v Diagram

จุดวิกฤต (Critical point) จุดนี้สภาวะของเหลว อิ่มตัวและสภาวะใออิ่มตัวเป็นสภาวะเดียวกัน อุณหภูมิ ความดัน และปริมาตรจำเพาะที่จุด วิกฤต เรียกว่า

> อุณหภูมิวิกฤต (Critical Temperature) ความคันวิกฤต (Critical Pressure) ปริมาตรวิกฤต (Critical Volume)

The T-v Diagram

2. P-v Diagram

Saturated Temperature and Saturation Pressure

กระบวนการระเหิด (Sublimation process) จุดนี้น้ำแข็งจะเปลี่ยนแปลงจากเฟส ของแข็งไปเป็นเฟสของไอโดยตรง

FIGURE 2-24

At low pressures (below the triple-point value), solids evaporate without melting first (*sublimation*).

Saturated Temperature and Saturation Pressure

ууу

เส้นการระเหิด (sublimation line) เส้นขอบเขตของเฟสซึ่งมีเฟสของแข็งและ ใออยู่ในสมคุลบนเส้นนี้ เส้นการหลอมตัว (fusion line) เส้นขอบเขตของเฟสของแข็งและของเหลวอยู่ในสมคุลบนเส้นนี้ เส้นการระเหย (vaporization line) เส้นขอบเขตของเฟสของเหลวและ ใออยู่ในสมคุลบนเส้นนี้

FIGURE 2-23

At triple-point pressure and temperature, a substance exists in three phases in equilibrium.

by Aj.Sanchai Ramphueiphad Program in Air Conditioning & Refrigeration Department of Mecanical Engineering www.arc.rmuti.ac.th;Email:acr501@gmail.com

Saturated Temperature and Saturation Pressure

Substance	Formula	T_{tp} , K	P_{tp} , kPa
Acetylene	C ₂ H ₂	192.4	120
Ammonia	NH ₃	195.40	6.076
Argon	A	83.81	68.9
Carbon (graphite)	C	3900	10,100
Carbon dioxide	CO ₂	216.55	517
Carbon monoxide	CO	68.10	15.37
Deuterium	D ₂	18.63	17.1
Ethane	C ₂ H ₆	89.89	8×10^{-4}
Ethylene	C ₂ H ₄	104.0	0.12
Helium 4 (λ point)	He	2.19	5.1
Hydrogen	H ₂	13.84	7.04
Hydrogen chloride	HCI	158.96	13.9
Mercury	Hg	234.2	1.65×10^{-7}
Methane	CH ₄	90.68	11.7
Veon	Ne	24.57	43.2
Nitric oxide	NO	109.50	21.92
Nitrogen	N ₂	63.18	12.6
Nitrous oxide	N ₂ O	182.34	87.85
Dxygen	02	54.36	0.152
Palladium	Pd	1825	3.5×10^{-3}
Platinum	Pt	2045	2.0×10^{-4}
Sulfur dioxide	SO ₂	197.69	1.67
ītanium	non Limount ton	1941	5.3×10^{-3}
Jranium hexafluoride	UF ₆	337.17	151.7
Vater	H ₂ O	273.16	0.61
(enon	Xe	161.3	81.5
Zinc	Zn	692.65	0.065

Source: Data from National Bureau of Standards (U.S.) Circ., 500 (1952).

The P-v Surface

2-5. PROPERTY TABLES

Defined as a new property, enthalpy, and given the symbol (H):

เอนทาลปี (Enthalpy, H)

เอนทาลปีเป็นคุณสมบัติที่ได้จากผลรวมของพลังงานภายในกับพลังงานที่เกิดจากการใหล (flow work) เขียนเป็นความสัมพันธ์ได้ดังนี้คือ

$$\mathbf{H} = \mathbf{U} + \mathbf{PV} \tag{kJ}$$

Or

$$\mathbf{h} = \mathbf{u} + \mathbf{P}\mathbf{v} \qquad (kJ/kg)$$

โดยที่ PV คือพลังงานที่เกิดจากการใหลซึ่งจะกล่าวถึงในภายหลัง สำหรับค่าเอนทาลปีต่อหน่วยมวล หรือเอนทาลปีจำเพาะ (specific enthalpy) จะใช้สัญลักษณ์ h

คุณสมบัติทางเทอร์โมใดนามิกส์ ของสารในการเปลี่ยนสถานะจากของเหลว กลายเป็นใอ

$$v_{fg} = v_g - v_f$$

 $\mathbf{V_f}=$ ปริมาตรจำเพาะของสารที่จุดของเหลวอื่มตัว

 $\mathbf{V_g}=$ ปริมาตรจำเพาะของสารที่จุดไออิ่มตัว

 $V_{\mathsf{fq}} =$ ปริมาตรจำเพาะของสารขณะเปลี่ยนสถานะ

by Aj.Sanchai Ramphueiphad Program in Air Conditioning & Refrigeration Department of Mecanical Engineering www.arc.rmuti.ac.th;Email:acr501@gmail.com

คุณสมบัติทางเทอร์โมใดนามิกส์ ของสารในการเปลี่ยนสถานะจากของเหลว กลายเป็นใอ

$$h_{fg} = h_g - h_f$$

h_f = เอนทาลปีของสารที่จุดของเหลวอิ่มตัว
 h_g = เอนทาลปีของสารที่จุดไออิ่มตัว
 h_{fg} = เอนทาลปีของสารขณะเปลี่ยนสถานะ

คุณสมบัติทางเทอร์โมใดนามิกส์ ของสารในการเปลี่ยนสถานะจากของเหลว กลายเป็นใอ

$$u_{fg} = u_g - u_f$$

 $egin{aligned} \mathbf{u_f} &= \mbox{พลังงานภายในของสารที่จุดของเหลวอิ่มตัว} \ \mathbf{u_g} &= \mbox{พลังงานภายในของสารที่จุดไออิ่มตัว} \ \mathbf{u_{fq}} &= \mbox{พลังงานภายในขณะเปลี่ยนสถานะ} \end{aligned}$

1a Saturated Liquid and Saturated Vapor States

Defined as a new property, enthalpy, and given the symbol (H):

Ex 2-1 A rigid tank contains 50 kg of saturated liquid water at 90 °C.

Determine the <u>pressure</u> in the tank and the <u>volume</u> of the tank

From Table (Table A-4)

$$P=P_{sat@90 \text{ oC}} = 70.14 \text{ kPa}$$

The specific volume of the saturated liquid at 90 °C

$$v = v_{f@90 \text{ oC}} = 0.001036 \text{ m}^3 / \text{kg}$$

Total volume of the tank is

$$V=mv=(50kg)(0.001036m^3/kg)=0.0518 m^3$$

Ex 2-2 A piston-cylinder device contains 0.057 m³ of saturated water vapor at 350 kPa pressure. Determine the <u>temperature</u> and the <u>mass</u> of the vapor inside the cylinder.

SOLUTION

From Table (Table A-5)

$$T=T_{sat@350kPa} = 138.88 \, ^{\circ}C$$

The specific volume of the saturated vapor at 90 °C

$$v = v_{g@350kPa} = 0.5243 \text{ m}^3 / \text{kg}$$

The mass of water vapor inside the cylinder

$$m=V/v=(0.057 \text{ m}^3)/(0.5243 \text{ m}^3/\text{kg})=0.109 \text{ kg}$$

Ex 2-3 A mass of 200 g of saturation liquid water is completely vaporized at a constant pressure of 100 kPa. Determine (a) the volume change and (b) the amount of energy added to the water.

SOLUTION

From Table (Table A-5)

$$v_{fg} = v_g - v_f = 1.6940 - 0.001043 = 1.6930 \text{ m}^3 / \text{kg}$$

$$\Delta V = mv_{fg} = (0.2 \text{kg})(16930 \text{m}^3/\text{kg}) = 0.3386 \text{m}^3$$

the amount of energy added to the water

$$mh_{fg} = (0.2kg)(2258kJ/kg) = 451.6kJ$$

1b Saturated Liquid – Vapor Mixture

FIGURE 2-34

The relative amounts of liquid and vapor phases in a saturated mixture are specified by the *quality* x.

Analyze this mixture properly, we need to know the proportions of the liquid and vapor phases in the mixture. This is done by defining a new property called the *quality* x as the mass of the mass of the vapor to the total mass of the mixture: m_{vapor}

where
$$m_{total} = m_{liquid} + m_{vapor} = m_f + m_g$$

1b Saturated Liquid – Vapor Mixture

$$V_f$$
 = saturated liquid

$$V_g$$
 = saturated vapor

$$V = V_f + V_g$$

$$V = mv \rightarrow m_t v_{av} = m_f v_f + m_g v_g$$

$$|m_f = m_t - m_g \rightarrow m_t v_{av} = (m_t - m_g) v_f + m_g v_g$$

$$v_{av} = (1 - x)v_f + xv_g$$

$$x = m_g / m_t$$

$$v_{av} = v_f + xv_{fg} \qquad (m^3 / kg)$$

$$v_{fg} = v_g - v_f$$

$$x = \frac{v_{av} - v_f}{v_{fg}}$$

$$u_{av} = u_f + xu_{fg} \qquad \text{(kJ/kg)}$$

$$h_{av} = h_f + x h_{fg} \qquad \text{(kJ/kg)}$$

$$y_{av} = y_f + xy_{fg}$$

$$y_f \le y_{av} \le y_g$$

FIGURE 2-36

Quality is related to the horizontal distances on *P-v* and *T-v* diagrams.

Example 2-4

A rigid tank contains 10 kg of water at 90 °C. If 8 kg of the water is in the liquid form and the rest is in the vapor form, determine (a) the pressure in the tank (b) the volume of the tank.

SOLUTION

(a) Saturation pressure from table A-4

$$P = P_{sat@90^{\circ}C} = 70.14$$
 kPa

(b) from table A-4

 $v_f = 0.001036 \text{ m}^3 / \text{kg}, v_a = 2.361 \text{ m}^3 / \text{kg}$

$$V = V_f + V_g = m_f v_f + m_g v_g$$

=
$$(8kg)(0.00 \text{ 1m}^3/kg) + (2kg)(2.36 \text{ 1m}^3/kg)$$

$$= 4.73 \text{m}^{-3}$$

SOLUTION (ext)

Another way is to first determine the quality x

(b) Saturation pressure from table A-4

$$x = \frac{m_g}{m_t} = \frac{2kg}{10kg} = 0.2$$

Specific volume

$$v = v_f + xv_{fg}$$

= 0.001m³/kg + (0.2)[(2.3 61 - 0.001)m³/kg]
= 0.473m³/kg

Volume of the tank

$$V = mv = (10\text{kg})(0.4 \text{ } 73\text{m}^3/\text{kg}) = 4.73\text{m}^3$$

Example 2-5

An 80-L vessel contains 4 kg of refrigerant-R134a at a pressure of 160 kPa. Determine (a) the temperture of refrigerant (b) the quality, (c) the enthalpy of the refrigerant, and (d) the volume occupied by the vapor phase.

SOLUTION

(a)

$$v = \frac{V}{m} = \frac{0.080 \text{ m}^3}{4 \text{ kg}} = 0.02 \text{ m}^3/\text{kg}$$

At 160 kPa, from Table A-12 $v_f = 0.0007435 \text{ m}^3 / \text{kg}, v_q = 0.1229 \text{ m}^3 / \text{kg}$

$$T = T_{sat @ 160 \ kPa} = -15.62 \ ^{\circ}\text{C}$$

by Aj.Sanchai Ramphueiphad

n in Air Conditioning & Refrigeration
artment of Mecanical Engineering

results as the Empilear FOL Gamesis com-

Example 2-5(Ext.)

(b)

$$x = \frac{v - v_f}{v_{fg}} = \frac{0.02 - 0.0007435}{0.1229 - 0.0007435} = 0.158$$

(c) At 160 kPa, from Table A-12 that $h_f = 29.78 \text{ kJ/kg}$, $h_{fq} = 208.18 \text{ kJ/kg}$

$$h = h_f + xh_{fg}$$
= 29.78kJ/kg + (0.158)(20 8.18kJ/kg)
= 62.7kJ/kg

(d) The mass of the vapor can be determined from Eq.2-3 $m_q = xm_t = (0.158)(4kg) = 0.6322 \text{ kg}$

$$v_g = m_g v_g = (0.632 \text{kg})(0.1229 \text{m}^3/\text{kg}) = 0.0777 \text{m}^3 \text{ (or 77.7L)}$$

PROBLEMS

- 1. A gas is contained in a vertical, frictionless piston-cylinder device. The piston has a mass of 4 kg and cross sectional area of 35 cm². A compressed spring above the piston exerts a force of 60 N on the piston. If the atmospheric pressure is 95 kPa, determine the pressure inside the cylinder. (123.4 kPa)
- 2 The average atmospheric pressure in Denver (elevation = 1610 m) is 83.4 kPa. Determine the temperature at which water in an uncovered pan will boil in Denver. (94.4°C)